Hints for Lab 6: Random walk and Brownian motion#
For the class on Wednesday, January 31st
See also
Go back to Lab 6
A. Scaling and convergence of the diffusively rescaled random walk#
Hints for Part A
- To calculate the quantile function (recall Lab 1A), you can use the following - calc_quantilefunction.- import numpy as np def calc_quantile(data): n = np.asanyarray(data).size q = (np.arange(n) + 0.5) / n return q, np.quantile(data, q) 
- You can compare the calculated quantile function with any known quantile function by making a q-q plot. Below is an example of comparing with the Standard normal distribution. - import scipy.stats import matplotlib.pyplot as plt q, qf = calc_quantile(data) plt.plot(qf, scipy.stats.norm.ppf(q)) plt.xlabel("data") plt.ylabel("normal") 
B. Universality of simple random walks#
Hints for Part B
- Use - np.random.default_rng().uniformto sample \(\mathcal{U}(-1, 1)\)- s = np.random.default_rng().uniform(-1, 1, size=n_steps_total) 
- The new distribution of \(W_{N=100}(t=1)\) may look like a normal distribution but with a different variance! 
